EFFECT OF ELECTRON CORRELATION ON $S_{N} 2$ ACTIVATION BARRIERS. FOURTH-ORDER MBPT CALCULATIONS

Ivan Černušák and Miroslav Urban
Department of Physical Chemistry, Comentus University, Mlynská dolina CH-1, CS-84215 Bratislara

Received December 3rd, 1987
Accepted February 23rd, 1988
Dedicated to Dr R. Zahradnik on the occasion of his 60 th birthday. It has been a great pleasure for us to work with Dr R. Zahradnik on many common projects in chemical reactivity.

Abstract

The activation barriers for a series of model gas-phase nucleophilic displacement reactions have been calculated at the MBPT(4)/DZ $+\mathrm{P}+\mathrm{D}$ level. Electron correlation significantly reduces the barrier height, in most cases by about 50%. The role of individual contributions up to the fourth order MBPT is analyzed in detail showing the vital importance of single and triple excitations.

Nucleophilic $S_{N} 2$ displacement reactions have attracted much attention of both experimentalists and theoretitians for many years. Two recent reviews on this class of reactions ${ }^{1,2}$ can be mentioned as the typical representatives of both experimental and theoretical approach to this topic. The impact of $\mathrm{S}_{\mathrm{N}} 2$ reactions on various branches of organic chemistry is remarkable (structure-reactivity relations, stereochemistry, solvent effects, steric and polar effects, correlation diagrams, intrinsic reactivity indices ${ }^{1-5}$). Their exceptional role can be further illustrated by Brauman's quotation ${ }^{4}$: "... the nucleophilic displacement reaction is also among the best understood chemical reactions and this reaction occupies a critical place in the pedagogy of elementary organic reactions. Nevertheless, the area still has major conceptual problems associated with it...".

In order to explain why the pertinent reaction is fast or slow the rigorous prediction of the potental energy hypersurface is needed, in particular - the stationary points on it. In this context, $\mathrm{S}_{\mathrm{N}} 2$ reactions are of special importance for quantum chemists, since they represent ideal candidates for the gas-phase reactivity studies. Moreover, they may serve as suitable model for testing of the new methods for the correlation energy evaluation which is of vital importance in chemical reactivity. Since the extremely short-lived complexes which correspond to stationary points on energy hypersurfaces are often not directly amenable to experiment, quantum chemistry represents an alternative tool for their investigation, providing information about their structure and energetics.

This contribution deals with the results of our continuing research on model $\mathrm{S}_{\mathrm{N}} 2$ reactions of alkylhalides ${ }^{6-9}$. The primary focus of our interest is the analysis of the correlation energy contributions to activation barrier within the many-body perturbation theory framework. The role of correlation energy in the $\mathrm{S}_{\mathrm{N}} 2$ activation process has been the subject of controversy during the last decade. The first systematic survey on $\mathrm{S}_{\mathrm{N}} 2$ activation barriers was published in 1976 by Keil and Ahlrichs ${ }^{10}$. They found that the absolute magnitude of the correlation contribution calculated by CEPA method is quite large, being as much as $30 \mathrm{~kJ} /$ mole. However, no obvious systematic pattern concerning the sign of the correlation correction followed from their study. Various recent reactivity investigations on different types of reactions ${ }^{11-15}$ support the notion that the correlation contribution to activation barrier is negative ${ }^{16}$. Only a few exceptions exist for $\mathrm{S}_{\mathrm{N}} 2$ reactions ${ }^{10.17}$ and we shall postpone the analysis of this problem to the discussion. Preliminary experience with MBPT computations suggest that the order-by-order contributions alter as the sign concerns and that the second-order doubles and fourth-order singles and triples are mainly responsible for the significant barrier lowering. In order to confirm whether this trend is general we have selected a series of various nucleophiles attacking the substrate $\mathrm{CH}_{3} \mathrm{~F}$ in model $\mathrm{S}_{\mathrm{N}} 2$ reaction:

$$
\begin{equation*}
\mathrm{X}^{-}+\mathrm{CH}_{3} \mathrm{~F} \rightarrow\left(\mathrm{X} \cdots \mathrm{CH}_{3} \cdots \mathrm{~F}\right)^{-} \rightarrow \mathrm{CH}_{3} \mathrm{X}+\mathrm{F}^{-} \tag{A}
\end{equation*}
$$

THEORETICAL

The overall energy barrier $\Delta E_{\mathrm{XF}}^{\mathrm{b}}$ is of central interest in this study. For the calculations of $\Delta E_{\mathrm{XF}}^{\mathrm{b}}$, i.e. the difference between the energy of the transition state and reactant energies:

$$
\begin{equation*}
\Delta E_{\mathrm{XF}}^{\mathrm{b}}=E\left[\mathrm{XCH}_{3} \mathrm{~F}\right]^{-}-E[\mathrm{X}]^{-}-E\left[\mathrm{CH}_{3} \mathrm{~F}\right] \tag{l}
\end{equation*}
$$

we used the fourth-order many-body perturbation theory including effects from single, double, triple and quadruple excitations. The theoretical background and details of computational implementation of this approach are described in several recent papers and monographs ${ }^{16,18-23}$. Here we recapitulate only the notation of the energy terms used in subsequent sections. The individual energy contributions at the n-th order of MBPT corresponding to singly-, doubly-, triply-, and quadruply-excited configurations are denoted as $S(n), D(n), T(n)$, and $Q(n)$, the latter includes also the renormalization term. Thus, the cumulative correlation energy contributions at the pertinent order of MBPT are written as

$$
\begin{align*}
& E_{\mathrm{MBPT}(2)}=D(2) \tag{2a}\\
& E_{\mathrm{MBPT}(3)}=D(2)+D(3) \tag{2b}
\end{align*}
$$

$$
\begin{equation*}
E_{\mathrm{MBPT}(4)}=D(2)+D(3)+S(4)+D(4)+T(4)+Q(4) . \tag{2c}
\end{equation*}
$$

The geometries of all polyatomic species required for the evaluation of $\Delta E_{\mathrm{XF}}^{\mathrm{b}}$ are depicted in Fig. 1. Note that the data for the reactions with hydride and fluoride anion (energies and geometries) were taken from our previous studies ${ }^{7,9}$. The remaining transition state structures refer to SCF gradient-optimized 4-31G geometries ${ }^{1}$ and the geometries of polyatomic anions and $\mathrm{CH}_{3} \mathrm{~F}$ were taken from refs ${ }^{24,25}$. Of course this choice is not fully optimal, because the electron correlation may influence the geometry, especially in the case of long axial bonds $\mathrm{C} \cdots \mathrm{X}, \mathrm{C} \cdots \mathrm{F}$. However, the correlated gradient optimization of any transition structure included here is beyond our computational capabilities at present. The recent MBPT(2)/6-311G(d, p) optimization of the simplest $\mathrm{H}^{\cdots} \mathrm{CH}_{3} \cdots \mathrm{~F}^{-}$structure was done by Havlas and coworkers ${ }^{26}$. This optimization was based on numerically determined gradient of the energy. According to their results the inclusion of second-order MBPT energy together with the $6-311 \mathrm{G}(d, p)$ polarized basis set leads to moderate shortening of the axial bonds in the transition structure by $0.12 .10^{-10} \mathrm{~m}(5 \%)$ with respect to the SCF value from ${ }^{10}$. They also tested the corresponding change of the barrier at $\operatorname{MBPT}(2) / 6-311 \mathrm{G}(d, p)$ level using these two geometries and arrived to the decrease of $15.7 \mathrm{~kJ} / \mathrm{mol}$ when going from SCF to MBPT(2) geometry. It should be stressed, however, that their $6-311 \mathrm{G}(d, p)$ basis set does not include diffuse p-functions which, on the contrary, were present in Keil and Ahlrichs calculation ${ }^{10}$. Our selection of SCF geometries of almost the same quality was motivated by the aim to investigate the trends of correlation contributions within a series of nucleophiles.

The basis set used for the evaluation of MBPT energies may be regarded as the so-called "minimum correlated basis", the notation we advocated recently ${ }^{16}$. Dunning's contraction ${ }^{27}$ of Huzinaga's ($9 s 5 p / 4 s$) primitive set ${ }^{28}$ to [$4 s 2 p / 2 s$] was used as a starting point in its construction. This underlying basis was augmented by polarization p-, d-, and diffuse p-functions. The resulting basis set (hereafter denoted as $\mathrm{DZ}+\mathbf{P}+\mathrm{D}$) is of the same quality as in ref. ${ }^{9}$, i.e. $[4 s 3 p 1 d]$ for C, N, O, F atoms, $[4 s 2 p 1 d]$ for the carbon atom of the CH_{3}-group and $[2 s 1 p]$ for hydrogen atoms. The details of the basis set construction for each species are collected in Table I. We note that for reactions with CN^{-}the polarization p-functions on hydrogen atoms of the CH_{3}-group were omitted. This choice was dictated by economical reasons. As we have learned previously ${ }^{7}$ this ommision has only slight effect on the barrier height.

RESULTS AND DISCUSSION

Table II contains the electronic energies of individual systems. Four calculations were performed for $\mathrm{CH}_{3} \mathrm{~F}$ in order to evaluate the barrier within a given reaction from consistent energies and geometries. A summary of various contributions to

Fig. 1
Definition of internal coordinates for the structures included in this study. Lengths r are in $10^{-10} \mathrm{~m}$, angles ω in deg: $a \mathrm{OH}^{-}, C_{\infty v}, r(\mathrm{OH})=0.985 ; b \mathrm{NH}_{2}^{-}, C_{2 v}, r(\mathrm{NH})=1.043, \omega(\mathrm{HNH})=$ $=101 \cdot 10 ; \mathrm{cN}^{-}, C_{\infty v}, r(\mathrm{CN})=1 \cdot 17 ; \mathrm{d} \mathrm{CH}_{3} \mathrm{~F}, \mathrm{C}_{3 v}, r(\mathrm{CF})=1 \cdot 418, r(\mathrm{CH})=1 \cdot 079, \omega(\mathrm{HCF})=$ $=110.43$; e $\mathrm{HCH}_{3} \mathrm{~F}^{-}, C_{3 v}, r(\mathrm{CF}) \quad 1.958, r\left(\mathrm{CH}_{c q}\right)=1.064, r\left(\mathrm{CH}_{\mathrm{ax}}\right)=1.937 ; f \mathrm{FCH}_{3} \mathrm{~F}^{-}$, $D_{3 h}, r(\mathrm{CF})=1 \cdot 804, r(\mathrm{CH})=1 \cdot 064, \mathrm{HOCH}_{3} \mathrm{~F}^{-}, C_{s}, r(\mathrm{CF})=1 \cdot 775, r(\mathrm{CO}) \quad 1 \cdot 973, r(\mathrm{CH})=$ $=1.059, r(\mathrm{OH})=0.965, \omega\left(\mathrm{FCH}_{1}\right) \quad-93 \cdot 2, \omega\left(\mathrm{FCH}_{2}\right)=92 \cdot 1, \omega\left(\mathrm{OCH}_{1}\right)-85 \cdot 0, \omega(\mathrm{HOC})=$ $=111 \cdot 2, \delta=119.7 ; h \mathrm{H}_{2} \mathrm{NCH}_{3} \mathrm{~F}^{-}, \mathrm{C}_{s}, r(\mathrm{CF}) \quad 1 \cdot 728, r(\mathrm{CN})=2 \cdot 138, r(\mathrm{CH})=1 \cdot 06, r(\mathrm{NH})$ $=1 \cdot 024, \omega\left(\mathrm{FCH}_{1}\right)=94 \cdot 1, \omega\left(\mathrm{FCH}_{2}\right) \quad 95 \cdot 3, \omega(\mathrm{FCN}) \quad 181 \cdot 2, \gamma-104 \cdot 48, \omega\left(\mathrm{H}_{4} \mathrm{NC}\right) \quad 126 \cdot 3$, $\delta==120.4 ; i \mathrm{NCCH}_{3} \mathrm{~F}^{-}, C_{3 v}, r(\mathrm{CF})=1.902, r(\mathrm{CC})=2.008, r(\mathrm{CN})-1 \cdot 158, r(\mathrm{CH})=1 \cdot 05$, $\omega(\mathrm{FCH})=87 \cdot 2 ; \mathrm{CNCH}_{3} \mathrm{~F}^{-}, C_{3 v}, r(\mathrm{CF}) \quad 1.973, r(\mathrm{NC})=1 \cdot 849, r(\mathrm{CN})=1 \cdot 166, r(\mathrm{CH})=$ $=1 \cdot 058, \omega(\mathrm{FCH})=84 \cdot 8$
activation barriers is in Table III. Data in Table III refer to the following reactions.

$$
\begin{align*}
& \mathrm{H}^{-}+\mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{H}^{2} \mathrm{CH}_{3} \cdots \mathrm{~F}^{-} \tag{B}\\
& \mathrm{F}^{-}+\mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{~F} \cdots \mathrm{CH}_{3} \cdots \mathrm{~F}^{-} \tag{C}\\
& \mathrm{NH}_{2}^{-}+\mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{H}_{2} \mathrm{~N}^{-} \mathrm{CH}_{3} \cdots \mathrm{~F}^{-} \tag{D}\\
& \mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{HO} \cdots \mathrm{CH}_{3} \cdots \mathrm{~F}^{-} \tag{E}\\
& \mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{NC} \cdots \mathrm{CH}_{3} \cdots \mathrm{~F}^{-} \tag{F}\\
& \mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{~F} \rightarrow \mathrm{CN} \cdots \mathrm{CH}_{3} \cdots \mathrm{~F}^{-} \tag{G}
\end{align*}
$$

The correlation between SCF $4-31 \mathrm{G}$ and $\mathrm{DZ}+\mathrm{P}+\mathrm{D}$ activation barriers will be discussed first (Fig. 2). The agreement is rather poor (the 4-31G barriers being systematically too low) but the correlation is quite good. The exception is the hydride anion for which the $4-31 \mathrm{G}$ barrier is extraordinarily negative. We have compared our SCF value for this nucleophile ($+53 \mathrm{~kJ} / \mathrm{mol}$) with various $\mathrm{SCF} / \mathrm{DZ}+\mathrm{P}+\mathrm{D}$ results of Havlas and coworkers ${ }^{26}$, optimized at the higher computational levels,

Table I

Orbital exponents of polarization and diffuse functions used in the construction of the $\mathrm{DZ}+\mathrm{P}+$ D basis set

[^0]Table II
Valence shell correlation energies. SCF values in E / E_{h}, correlation contributions in $0.001 E / E_{h}\left(E_{h}=2625.5 \mathrm{~kJ} / \mathrm{mol}\right)$, values for $\mathrm{H}^{-}, \mathrm{F}^{-}$, $\mathrm{CH}_{3} \mathrm{~F}^{a}, \mathrm{CH}_{3} \mathrm{~F}^{b}$ taken from ref. ${ }^{7}$, values for $\mathrm{OH}^{-}, \mathrm{HOCH}_{3} \mathrm{~F}^{-}$, from ref. ${ }^{9}$

Reaction component	$-E_{\text {SCF }}$	$-E_{\text {MBPT (4) }}$	-D(2)	$-D(3)$	$-S(4)$	$-D(4)$	-T(4)	$-Q(4)$
H^{-}	0.486810	$31 \cdot 814$	22.104	$7 \cdot 215$	$0 \cdot 122$	2.730	0.000	0.357
F^{-}	99.443298	213.990	$207 \cdot 197$	-8.341	4.962	$4 \cdot 248$	6.135	0.211
OH^{-}	75.400409	229.961	$220 \cdot 132$	-7.371	4.172	$6 \cdot 126$	7.555	$1 \cdot 193$
CN^{-}	92.316002	294.720	$276 \cdot 610$	-1.402	$3 \cdot 702$	8.390	$13 \cdot 128$	5.707
$\mathrm{NH}_{2}{ }^{-}$	55.536767	219.990	204.655	2.914	$2 \cdot 660$	$5 \cdot 447$	$6 \cdot 854$	2.541
$\mathrm{CH}_{3} \mathrm{~F}^{\text {a }}$	$139 \cdot 075919$	363.584	334.326	14.588	3.351	7.240	7.757	3.678
$\mathrm{CH}_{3} \mathrm{~F}^{\text {b }}$	139.071944	$340 \cdot 252$	313.969	$12 \cdot 312$	3.039	$6 \cdot 892$	7.003	$2 \cdot 963$
$\mathrm{CH}_{3} \mathrm{~F}^{\text {c }}$	139.077420	362.829	$333 \cdot 648$	$14 \cdot 655$	$3 \cdot 307$	$7 \cdot 188$	7.675	3.644
$\mathrm{CH}_{3} \mathrm{~F}^{\text {d }}$	139.073520	339.797	313.353	12.360	$3 \cdot 266$	6.827	6.927	2.935
$\mathrm{HCH}_{3} \mathrm{~F}^{-}$	139.538584	388.806	349.972	11.115	8.928	$10 \cdot 641$	11.611	$3 \cdot 460$
$\mathrm{FCH}_{3} \mathrm{~F}^{-}$	$238 \cdot 510085$	584.899	545-902	$1 \cdot 329$	12.353	12.493	$17 \cdot 320$	4.499
$\mathrm{HOCH}_{3} \mathrm{~F}^{-}$	214.471133	599.479	558.095	$3 \cdot 134$	11.553	13.858	18.471	5.634
$\mathrm{H}_{2} \mathrm{NCH}_{3} \mathrm{~F}^{-}$	194.606747	591.947	$545 \cdot 293$	12.437	$9 \cdot 682$	13.325	18.167	6.957
$\mathrm{CNCH}_{3} \mathrm{~F}^{-d}$	$231 \cdot 357090$	$654 \cdot 429$	603.930	$5 \cdot 067$	11.915	$17 \cdot 429$	24.717	$8 \cdot 629$
$\mathrm{NCCH}_{3} \mathrm{~F}^{-d}$	$231 \cdot 362239$	$657 \cdot 272$	$607 \cdot 811$	$4 \cdot 357$	11.907	$17 \cdot 125$	$25 \cdot 194$	$9 \cdot 123$

[^1]
Table III

Contributions to the activation barrier (in $\mathrm{kJ} / \mathrm{mol}$)

Contribution	Nucleophile					
	H^{-}	F^{-}	$\mathrm{NH}_{2}{ }^{-}$	OH^{-}	CN^{-}	CN^{-}
$E_{\text {SCF }}$	$52 \cdot 96$	23.98	$19 \cdot 53$	$17 \cdot 58$	71.63	$85 \cdot 15$
$E_{\text {MBPT(2) }}=D(2)$	-36.49	-11.50	-18.35	-11.33	-46.86	$-36 \cdot 67$
$D(3)$	22.09	$12 \cdot 91$	$13 \cdot 47$	10.90	$17 \cdot 33$	15.47
$S(4)$	-15.14	-10.61	-9.75	-9.28	-12.97	-12.99
$D(4)$	-2.68	-2.64	-1.81	-1.43	-5.01	-5.81
$T(4)$	$-12 \cdot 10$	$-9 \cdot 00$	-9.55	-8.51	-13.49	-12.24
$Q(4)$	0.37	1.60	2.03	2.09	$1 \cdot 26$	-0.03
$E_{\text {MBPT(3) }}$	-14.41	1.42	-4.88	-0.43	-29.53	-21.20
$E_{\text {MBPT(4) }}$	-43.95	-19.23	-23.97	-17.56	-59.74	$-52 \cdot 28$
$E_{\mathrm{SCF}}+E_{\mathrm{MBPT}}(2)$	-16.46	-12.48	$-1 \cdot 18$	$6 \cdot 25$	24.77	48.48
$E_{\text {SCF }}+E_{\text {MBPT (3) }}$	38.55	25.39	$14 \cdot 66$	$17 \cdot 15$	42.10	63.95
$E_{\mathrm{SCF}}+E_{\mathrm{MBPT}(4)}$	9.01	$4 \cdot 74$	$-4 \cdot 43$	$0 \cdot 02$	11.89	$32 \cdot 87$

Fig. 2
Correlation between SCF/4-31G and SCF/DZ $+\mathbf{P}+\mathbf{D}$ barriers. Values in $\mathrm{kJ} / \mathrm{mol} . \mathrm{CN}^{-}$and CN^{-}refer to C -side and N -side attack of cyanide anion, respectively
and they consistently lie in the range $50-60 \mathrm{~kJ} / \mathrm{mol}$. The deviation of hydride anion from the correlation in Fig. 2 can be explained by the very poor 4-31G representation of this ion. Thus, at the SCF/4-31G level, the $\mathrm{S}_{\mathrm{N}} 2$ reaction with H^{-}might suffer from the larger basis set superposition error than the other reactions do. The correlation in Fig. 2 serves also as the further check of the $4-31 \mathrm{G}$ geometries for the reactions with $\mathrm{NH}_{2}^{-}, \mathrm{OH}^{-}, \mathrm{CN}^{-}$, the respective points lie almost on the straight line.

We now turn our attention to the effect of electron correlation on the activation barriers. Inclusion of the simplest second-order correction gives the qualitatively same trend in barriers as is found for the complete fourth-order calculation. If we analyze the latter in detail we can see that the individual contributions posess different energy patterns (Fig. 3). While the $D(2)$ and $D(3)$ values exhibit opposite trends, i.e. tend to cancel out, the fourth-order components for a series of nucleophiles are quite similar. However, there are extraordinary differences in absolute values of these quantities. The $D(2), D(3), S(4)$, and $T(4)$ are dominant contributions, while $D(4)$ and $Q(4)$ have only marginal effects on activation barrier. It is interesting that the patterns for $D(4)$ and $Q(4)$ as well as for $S(4)$ and $T(4)$ are very similar, almost identical in the latter case. Fig. 3 immediately shows the main outcome of the preceding analysis - namely, the quantities $D(2), S(4), T(4)$ are responsible for the negative correlation contribution to the activation barrier,

Fig. 3
Patterts of individual correlation energy contributions (in $\mathrm{kJ} / \mathrm{mol}$) within the fourth--order of MBPT for the set of s:x nucleophiles

Fig. 4
Lowering of the activation barrier (in $\mathrm{kJ} / \mathrm{mol}$) due to the electron correlation for the set of six nucleophiles

It should be stressed that this complicated interplay of various positive and negativer terms is often left unanalysed and attention is payed only to cumulative order--by-order contributins. For instance, in Table III we may see a large range (of about $40 \mathrm{~kJ} / \mathrm{mol}$) of cumulative contributions MBPT(2), compared to a $15 \mathrm{~kJ} / \mathrm{mol}$ range of cumulative contributions MBPT(3) and MBPT(4). However, such a comparison gives no explanation why $D(3)$ and the sum $S(4)+D(4)+T(4)+Q(4)$ are of opposite sign.

The total lowering of the activation barrier caused by the electron correlation is depicted in Fig. 4. The uniform drop of the barrier height is really significant and emphasizes the importance of correlation effects in the $\mathrm{S}_{\mathrm{N}} 2$ activation process. The order of the nucleophiles corresponds to their classification proposed by Tanaka and coworkers ${ }^{29}$. According to their flowing afterglow measurements $\mathrm{NH}_{2}^{-}, \mathrm{OH}^{-}$, F^{-}, and H^{-}belong to anions of high nucleophilicity, while CN^{-}is distinctively less reactive. This concerns especially the N -side attack of CN^{-}. The activation barrier for the ambident CN^{-}ion is lower if the methyl fluoride is attacked by the C -side of CN^{-}. This lowering is caused mainly by the negative $D(2)$ contribution, incidentally the most negative second-order term among the $D(2)$ contributions calculated i^{n} this study.

The above analysis can be utilized also in explaining the discrepancy between our MBPT(4) calculations and previous $\mathrm{S}_{\mathrm{N}} 2$ studies ${ }^{10,17}$ which indicated that the electron correlation may have the destabilizing effect on the $\mathrm{S}_{\mathrm{N}} 2$ transition states. Both cited papers used methods which did not include the important $S(4)$ and $T(4)$ contributions to the activation barrier. The discrepancy between our MBPT(4) and CEPA results of Keil and Ahlrichs ${ }^{10}$ can be explained by the omission of these two terms and approximate treatment of $Q(4)$. In the work of Evanseck et al. ${ }^{17}$ only the second and third order of MBPT using split-valence polarized $6-31 \mathrm{G}(d)$ basis set was employed. Thus, in addition to the lower level of the theory also the basis set without the diffuse p-functions was used. As known, these functions are necessary for the proper description of negative ions, so we can suspect that their positive correlation contribution to ΔE^{b} is the basis set effect at the correlated level.

We shall make no direct comparison with experimental data, since the necessary vibrational analysis and the statistical thermodynamical treatment of present reactions will be published in a separate paper. Here we only repeat that our activation bariers correlate quite well with the apparent Arrhenius activation energies of Tanaka et al. ${ }^{29}$. This notion was also supported by the comparisons made in our preceeding papers ${ }^{6-9}$.

CONCLUSION

The MBPT(4) calculations of activation barriers for the set of model gas-phase $\mathrm{S}_{\mathrm{N}} 2$ reactions between simple negative ions and the methyl fluoride have revealed
vital importance of the correlation effects on the barrier height. For all reactions the correlation contribution lowers $\Delta E_{\mathbf{X F}}^{\mathrm{b}}$, single and triple excitations contribute extraordinarily to this lowering, while the double excitation terms at the second and third order tend to compensate each other, similar compensation is observed in the remaining MBPT(4) components, $D(4)$ and $Q(4)$. The exceptional role of single and triple excitations (which occur for the first time at the fourth order and may be overestimated ${ }^{16,30}$) should be further examined, e.g. by the coupled cluster approach. This goal, together with the investigation of the basis set effects and the improvement of the transition state geometry will be subject of our future work.

Part of the computations was performed at the Max-Planck-Institute for Astrophysics, Garching, during the DAAD stay of I. C. Computer time and support from Prof. G. H. F. Diercksen is gratefully acknowledged. We thank Dr R. Zahradnik and Dr Z. Havlas for providing details of their work prior to publication.

REFERENCES

1. Mitchell D. J.: Thesis. Queens University, Kingston 1981.
2. Harris J. M., McManus S. P. (Eds): Nucleophilicity, Advances in Chemistry Series No. 215. American Chemical Society, New York 1987.
3. Ingold C. K.: Structure and Mechanism in Organic Chemistry. Cornell University Press, Ithaca, New York 1969.
4. Brauman J. I., Dodd J. A., Han C.-C. in the book: Nucleophilicity, Advances in Chemistry Series No. 215 (J. M. Harris and S. P. McManus, Eds), pp. 23-33. American Chemical Society, New York 1987.
5. Shaik S. S.: Prog. Phys. Org. Chem. 15, 197 (1985).
6. Černušák I., Urban M., Čársky P., Treindl L.: Chem. Zvesti 36, 749 (1982).
7. Urban M., Černušák I., Kellö V.: Chem. Phys. Lett. 105, 625 (1984).
8. Cernušák I., Urban M.: Collect. Czech. Chem. Commun. 49, 1854 (1984).
9. Cernušák I., Diercksen G. H. F., Urban M.: Chem. Phys. Lett. 128, 545 (1986).
10. Keil F., Ahrichs R.: J. Am. Chem. Soc. 98, 4787 (1976).
11. Urban M., Bartlett R. J.: J. Am. Chem. Soc. 110, 4926 (1988).
12. Krishnan R., Frisch M. J., Pople J. A., von R. Schleyer P.: Chem. Phys. Lett. 79, 408 (1981).
13. Frisch M. J., Binkley J. S., Schaefer H. F.: J. Chem. Phys. 81, 1882 (1984).
14. Goddard J. D., Schaefer H. F.: J. Chem. Phys. 70, 5117 (1979).
15. Dupuis M., Lester jr W. A., Lensfield B. H., Liu B.: J. Chem. Phys. 79, 6167 (1983).
16. Urban M., Cernušák I., Kellö V., Noga J. in the book: Methods in Computational Chemistry, Vol. 1 (S. Wilson, Ed.). Plenum Press, New York 1987.
17. Evanseck J. D., Blake J. F., Jorgensen W. L.: J. Am. Chem. Soc. 109, 2349 (1987).
18. Urban M., Hubač I., Kellö V., Noga J.: J. Chem. Phys. 72, 3378 (1980).
19. Kellö V., Urban M.: Int. J. Quantum. Chem. 18, 1341 (1980).
20. Noga J.: Comput. Phys. Commun. 29, 117 (1983).
21. Cársky P., Urban M.: Ab initio Calculations. Methods and Applications in Chemistry, Lect. Notes Chem. (G. Berthier, J. M. S. Dewar, H. Fischer, K. Fukui, H. Hartmann, H. H. Jaffé, J. Jortner, W. Kutzelnigg, K. Rudeberg, E. Scrocco and W. Zeil, Eds), Vol. 16. Springer, Berlin 1980.
22. Bartlett R. J.: Ann. Rev. Phys. Chem. 32, 359 (1981).
23. Bartlett R. J., Purvis G. D.: Phys. Scr. 21, 255 (1980).
24. Radom L.: Aust. J. Chem. 29, 1635 (1976).
25. Wiberg K. B.: J. Am. Chem. Soc. 101, 1718 (1979).
26. Havlas Z., Merkel A., Janoschek R., Kalcher K., Zahradnik R.: Chem. Phys., in press (1988).
27. Dunning T. H.: J. Chem. Phys. 53, 2823 (1970).
28. Huzinaga S.: J. Chem. Phys. 42, 1293 (1965).
29. Tanaka K., Mackay G. I., Payzant J. D., Bohme D. K.: Can. J. Chem. 54, 1643 (1976).
30. Urban M., Kellö V., Cernušák I., Noga J.: Chem. Phys. Lett. 135, 346 (1987).

Translated by the author (I.C.).

[^0]: ${ }^{a}$ Exponent for s-orbital is $0.04 ;{ }^{b}$ used also for axial hydrogen atom in $\mathrm{HCH}_{3} \mathrm{~F}^{-} ;{ }^{c}$ used also for $\mathrm{FCH}_{3} \mathrm{~F}^{-}$.

[^1]: ${ }^{a}$ Geometry from ref. ${ }^{10} ;{ }^{b}$ geometry from ref. ${ }^{10}$, polarization function on hydrogen atoms omitted; ${ }^{c}$ geometry from ref. ${ }^{25} ;{ }^{d}$ geometry from ref. ${ }^{25}$, polarization functions on hydrogen atoms omitted.

